跳到主要內容區塊
:::
開啟
:::
  • default image
  • 演講或講座
  • 原子與分子科學研究所
  • 地點

    原分所浦大邦講堂 (臺大校園內)

  • 演講人姓名

    Prof. Boris Blinov (Department of Physics, University of Washington, USA)

  • 活動狀態

    確定

  • 活動網址

Two-dimensional trapped ion crystals, micromotion and qubit state detection

2023-09-06 10:00 - 11:00

加入行事曆

Abstract: To study potential avenues for scaling up trapped ion crystal size, we built a modified Paul trap with an oblate aspect ratio designed for trapping radial 2-d ion crystals. In this geometry, the micromotion can only be minimized in the axial direction, transverse to the crystal plane. The in-plane micromotion is unavoidable, its amplitude increasing linearly with distance from the trap center. Thus, different ions in a large crystal experience different micromotion amplitudes, and different Doppler shifts, making traditional laser cooling techniques inefficient. We explored two avenues towards improving the laser cooling efficiency: the two-tone laser cooling and the micromotion-synchronized pulsed Doppler cooling, allowing us to stabilize larger 2-d crystals than with the traditional Doppler cooling.


These experiments were enabled in part by the novel imaging system based on a CMOS camera that allows 1.5 ns temporal resolution of single photon detection. Direct observation of the trapped ion micromotion is attainable with this camera, leading to a simplified way of micromotion detection and compensation. We also demonstrated how this camera can be used for robust, low crosstalk detection of a trapped Ba+ ion qubit register, with average single-qubit detection error of 4.2(1.5) ppm and a four-qubit state detection error of 17(2) ppm, limited by the decay lifetime of the qubit.